Skip to main content
Main Menu
  • Products
    Back
    Products
    • Fiberglass Yarns
    • Beams
    • ZeroTwist®
    • Textile Chopped Strands
    • Texturized and Voluminized Yarns
    • C-Glass Staple Fiber Yarns
    • Direct Roving
    • Staple Fiber
  • Applications
    Back
    Applications
    • Aerospace
    • Automotive
    • Construction
    • Electrical
    • Industrial
    • Leisure
    • Wind Energy
    • Medical
  • Technologies
    Back
    Technologies
    • Fiberglass Glossary
    • Fiberglass Manufacturing
      Back
      Fiberglass Manufacturing
      • Fiberglass Properties
    • Braiding
    • Coating
    • Finishing
    • Knitting
    • Laid Scrim
    • Multiaxial
    • Texturizing & Voluminizing
    • Warping / Beaming
    • Weaving
    • Other technologies
  • Media Center
    Back
    Media Center
    • Documents
    • Events
    • News
  • Contact Us
world SAINT-GOBAIN
  • Logo Saint-Gobain
  • Login
  • Register
Logo Saint-Gobain
  • Products
    • Fiberglass Yarns
    • Beams
    • ZeroTwist®
    • Textile Chopped Strands
    • Texturized and Voluminized Yarns
    • C-Glass Staple Fiber Yarns
    • Direct Roving
    • Staple Fiber
  • Applications
    • Aerospace
    • Automotive
    • Construction
    • Electrical
    • Industrial
    • Leisure
    • Wind Energy
    • Medical
  • Technologies
    • Fiberglass Glossary
    • Fiberglass Manufacturing
      • Fiberglass Properties
    • Braiding
    • Coating
    • Finishing
    • Knitting
    • Laid Scrim
    • Multiaxial
    • Texturizing & Voluminizing
    • Warping / Beaming
    • Weaving
    • Other technologies
  • Media Center
    • Documents
    • Events
    • News
  • Contact Us

You are here

  1. Home
  2. Technologies
  3. Multiaxial
Technologies Menu  

Fiberglass Glossary

Fiberglass Manufacturing

  • Fiberglass Properties

Braiding

Coating

Finishing

Knitting

Laid Scrim

  Multiaxial

Texturizing & Voluminizing

Warping / Beaming

Weaving

Other Technologies

Multiaxial

The multiaxial machine is used to produce multi-layer structures for reinforcement applications. Major applications for multiaxial products include composites for the boat and shipping industries and rotor blades for power stations.

 

          

 

Description of the process

Several layers of unidirectional reinforcement material (yarn, strand, roving) are stacked and oriented by means of a weft insertion system in predetermined directions that can vary widely (0° to 90°). Additional stitching yarns applied by a knitting system bind the layers together to prevent slippage. Other reinforcing materials such as chopped strand mat and tissue can be added to the multiaxial structure.

Advantages of such a structure include:

  • Reinforcement in predetermined direction
  • High drapeability
  • Good filament wet out
  • Good impact resistance
  • Reduction of lay up time
Provide Feedback
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
  • About Us
  • EHS
  • History
  • Vetrotex College
  • Sitemap
  • Legal
  • Subscribe to our Newsletter

 CONTACT US

©Saint-Gobain Vetrotex 2021. All rights reserved.